COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF ELECTRONICS ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	260700)7	SEMESTER	7	
COURSE TITLE	Intelligent Control Systems				
INDEPENDENT TEACHING ACTIVITIES					
if credits are awarded fo course, e.g. lectures, labord are awarded for the whol teaching hours	r separate atory exer e of the co and the to	e components of the cises, etc. If the credits purse, give the weekly ptal credits	WEEKLY TEACHING HOURS	CREDITS (ECTS)	
Lectures			2	Л	
Laboratory			2	T	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURS general bac special background, specialise knowledge, skills dev	SE TYPE ckground, d general elopment	Specialisation Course			
PREREQUISITE CO	URSES:	None			
LANGUAGE OF INSTRU	JCTION	Greek			
and EXAMINA	TIONS:				
IS THE COURSE OFFE	RED TO	NO			
ERASMUS STU	JDENTS				
COURSE WEBSIT	E (URL)	http://labpower.teipir.gr			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of this course module students possess advanced knowledge, skills and competences in the subject of Intelligent Control Systems that enable them to:

- 1. Describe a discrete-time control system using basic block diagrams.
- 2. Design and construct an industrial analog controller in order to improve the characteristics of a given system.
- 3. Design and implement a digital controller for use in continuous or discrete-time systems.
- 4. Solve any combinational or sequential logic problems and implement the solution through the use of programmable logic controllers (PLCs).
- 5. Program logic controllers (PLC) for the implementation of solutions to given problems in continuous or discrete time systems.
- 6. Use a PC interface in order to monitor and control an industrial processes.

7. Design and implement intelligent building systems using the KNX platform.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Declaration of new recently ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking
Production of new research ideas	Others

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Team work
- Production of free, creative and inductive thinking

(3) COURSE CONTENT

<u>Lectures</u>

- 1. Closed loop discrete-time systems (description and stability in the Z domain).
- 2. State variables, controllability and observability of a system in the state space.
- 3. Improvement / compensation schemes and design of controllers (PID, phase-lead, phase-lag)
- 4. Digital controllers to analog systems.
- 5. Programmable logic controllers (PLC).
- 6. Industrial controllers.
- 7. Remote control technologies.
- 8. Digital Control Applications
 - a. monitoring / control of industrial processes,
 - b. "Smart" buildings building energy management systems BMS,
 - c. management of renewable energy sources and control of PV.
- 9. Fuzzy logic and fuzzy control.
- 10. Robust and intelligent control:
 - a. robotic arm motion,
 - b. optimization of production lines.

Laboratory Experiments:

Exercises in the laboratory

- 1. Speed control. Controller compensation with PID.
- 2. Position control (Parallel compensation).
- 3. Temperature control flowing gas. Compensation with a PID.
- 4. Automation with PLC S7_200.
- 5. Level Control with PC and the NI-9008 card.
- 6. Use of a Robot to select objects.

Exercises over the Internet (<u>http://labpower.teipir.gr</u>)

- 1. Speed Control.
- 2. Fluid level Control.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc. USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Face to face lectures Use of electronic presentation with multimedia content in class, Student support through the course webpage and the departmental e-learning platform, Electronic communication of instructors and students, through the course webpage and by e-mail, Virtual Lab experiments over the Internet. 		
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Activity Lectures Study for lectures Laboratory experiments - projects Report on lab experiments - group projects Study and preparation for exams Course Total	rojects, study. Semester workload (hours) 26 26 26 26 16 120	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Student evaluation is performed in the language of nstruction. Final course grade = Lectures part grade x 60% + Laboratory part grade x 40% <u>Lectures part grade:</u> Projects (2) (20%) Final written exam (80%) Final written exam includes development questions and problem solving questions. <u>Laboratory part grade:</u> Evaluation on each lab experiment and report (60%) Evaluation on lab group projects and presentation (40%) 		

Essential reading

- 1. Papazacharia, Ch., Solution for PLC programming and installation, Athens, Greece.
- 2. Malatestas, P., Automatic Control Systems, Vol. A and B, Tziolas Eds., Thessaloniki, Greece, 2010.

Recommended Books

- 1. Dorf, R.C. and Bishop, R.H., Modern Control Systems, Prentice-Hall, 2000.
- 2. Kailath, T., Linear System Theory, Prentice-Hall, 1980.
- 3. Chen, C.-T., Linear System Theory and Design, HRW, 1981.
- 4. Ogata, K., Modern Control Engineering, Prentice Hall Inc., New Jersey, 1997.
- 5. Kuo, B.C., Automatic Control Systems, Prentice-Hall Inc., New Jersey, 1995.
- 6. Lecture Notes by the instructor (2011).